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SIMILARITY SOLUTIONS FOR CONVERGING SHOCKS

by

R. B. Lazarus and R. D. Richtmyer

ABSTRACT

This report recapitulates the known results for
similarity solutions for the flow problem of a strong
converging shock in spherical or cylindrical symmetry
and extends that work in four ways: (1] parameters of
the standard solutions are given for a large number of
values of y; (2) some new, non-analytic solutions are
exhibited for relatively large values of y; (3) the
standard solutions are examined more thoroughly in the
limits y+~ and y+l; and (4) solutions, existing only
in a narrow band of values of y, are given for the
problem of two converging shocks.

I. INTRODUCTION

As is well known, 1,2,3,4 there is a similarity solution for a

shock converging on the origin in spherical or cylindrical symmetry,

when that incoming shock runs with infinite Mach number into uniform

material at rest and when that material obeys a gamma law equation

of state pe = p/(y-1), with e the internal energy per unit mass, p

the density, and p the pressure. The solution includes reflection

of the shock at the origin, and divides space-time (r,t) into three

regions, namely Region 1 ahead of the incoming shock, Region 3 be-
.. hind the reflected shock, and Region 2 between the shocks (see Fig.

l-l).
.-

Previous authors have observed that the solution is unique

(given gamma and the type of symmetry) if one requires continuity

of the derivatives of the flow variables throughout the interior of

Region 2, and the present work includes calculations of those “stand-

ard” solutions for many values of gamma (and both symmetries), in-

cluding the limiting cases y+l and y+=. But the present work also



shows that those solutions are

not unique.

Even with the requirement

of continuous derivatives, it is

shown in Sec. VI that, for a

narrow band of values for gamma

near y = 2, two new solutions

exist in which Region 2 is di-

vided by a second incoming shock,

which overtakes the original

shock at the origin.

Furthermore, as discussed

in a previous report in this

series,sfor the case of a col-

lapsing cavity, the original

flow equations do not require

continuity of derivatives. In

1

Fig. 1-1

r-t trajectories of incoming and
reflected shocks.

particular, there is in Region 2 a limiting negative characteristic

which reaches the origin concurrently with the incoming shock;

jumps in the derivatives of the flow quantities can be propagated

along that characteristic. Since the trajectory of that character-

istic corresponds to a single value of the similarity variable, we

may accept similarity solutions with jumps of derivative at that

point. It is shown in Sec. III that one-parameter families of such

solutions exist for gammas greater than certain critical values (in

fact, the very values which are the threshold for the double-shock

solution band) , and that those solutions appear to be quite inter-

esting.

Finally, it appears that these two types of new solution can

be combined.

II. THE FLOW EQUATIONS

Given an inviscid fluid without heat conduction, described by

its local velocity v(r,t), its density p(r,t), its energy per unit——

mass e(r,t), and its pressure p(r,t), as given by some equation of— —

2

.

u

-.
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state p = p(p,e), the equations
are, in the absence of any body

LP=O

Lpy = -vp

Lpe = -pv”~,

where the operator L is defined

governing regions of smooth flow

forces ,

(2.1)

by Lf = f+ + v~vf, the subscript t—
denoting partial differentiation with res~ect to t. For a poly-

tropic fluid, the equation of state is p = (y-l)pe, and the entropy

is a function only of the combination s = pp-y. Substituting for e

in the equations above, we find that (~oV + ~/~t)s = O, so that the

entropy is indeed constant along the trajectories of fluid elements.

Introducing the new variable c(r_,t) = +4-= +4= ,
the local sound speed, we can rewrite our equations as

‘t + V“(py) = o

i- V.vv -1-
~t––

+I(PC2) = o (2.2)

+ V*VC + (y-l)cv~v = o.
Ct – —

For the cases of cylindrical symmetry (v=l) or spherical symmetry

(v=2), these can be written (using u for the radial fluid velocity)

‘t
+ (pu)r + vpu/r = O

‘t
+Uu+

r +(pcz)r = o (2.3)

Ct
+ Uc r + (y-l)c(ur+vu/r) = O.

3



Another attractive choice of dependent variables replaces

p(r,t) by s(~,t) = c2pl-y/y. With the substitution k = 2/(y-1),

this choice yields

+Us=
‘t

o
r (2.4)

(U t kc)t+ (ufc)(u~kc)r= TVuc/r + C2Sr/y(y-l)S,

displaying the equations in characteristic form.

Now, with a and K free parameters, we try the similarity vari-

able

Y = const. + log r - dog t,

and the substitutions

u(r,t) = - art-%(y)

c(r,t) = - art-lc(y)

&2t-2r-k(y-l)S(y).p(r,t) = porKR(y) or s(r,t) = so

(2.5)

(2.6)

Using af(y)/ar = f’/r and af(y)/at = - af’/t, we can substitute

these into Eq. 2.3. We find that we get common factors of PO, a,

r, and t; dividing these out and using the more convenient A = I/a,

we derive”

R’ + (K+v+l)RV + (RV)’ = O

V(A+V) + V’(l+V) + C[(K+2)C+2C’+C’/R]/y = O

2C(A+V) + 2C’(l+V) + (y-l)c((v+l)v+v’) = o.

Using the variables u, c, and S, we would get

(2.7)

.

d

-.

.

(l+V)S’ + S [(2-K(y-1))V+2~] = O

4



and, after multiplication by (l+VTC),

[(1+V)2- Cz] (V’tkC’) = vVC[C7(1+V)]

- C2[l+C/(l+V)] (K+k(~-1))/y (2.8)
. - (1+V7C)(A+VtC)(V*kC),

. where of course Eq. 2.8 denotes two equations, one with all the

upper signs and one with all the lower signs.

By a bit of algebra, we can get from the R, V, C equations two

different expressions for l/(l+V), one involving constants R’/R

and V’/(I+V), and the other involving constants C’/C and V’/(l+V).

Equating them, we can get an expression whose derivative with re-

spect to y vanishes, leading to a constant of the motion and thus

reducing our system to a system of two equations. Explicitly, the

constant of motion is

exP(2Y/a)C2[R(l+V)]q/Ry-1 = const. , with

q= [K(y-1)+2(1-cx)/u]/(K+v+l) .
(2.9)

With more algebra, we can then put our system into the form

v’ = N1(V,C)/D(V,C)
(2.10)

c’ = N2(V,C)/D(V,C),

where

D(V,C) = (1+V)2-C2

..
and

(2.11)

.- N1(v,c) = -V(l+V)(A+V) + C2 [(v+l)v+.?&?l!S ]
Y

(2.12)

N2[v,c) = -1/2c[v2(2+v(y-1)) + v((3-y)x+v(y-1)+

+y+l) + 2A] + C3[1 + K(Y-l;+2~A-1)1.



Since the similarity variable y does not appear explicitly in

D, Nl, or N2, our system of two ordinary first order non-linear

differential equations is autonomous, and we can write it as a

single equation

dC/dV = f(V,C)o (2.13)

h initial condition for this equation, however, is a condition on

one branch of the curve r(t) = const. ltl~, corresponding to some

constant value of y,

The free parameter K allows us to handle the s = constant

boundary condition of the cavity collapse problem described in Ref.

5, by taking K = -2(A-1)/(y-1), and the p = constant boundary con-

dition of an infinitely strong shock, by taking K = O.

Since Eq. 2.13 does not contain y, it will be convenient to

change similarity variable to x = -e-Ay*

III. THE CONVERGING SHOCK; THE SINGULARITIES

To permit a similarity solution, any shock must be at a con-

stant value of the similarity variable x (or y), so that the physi-

cal boundary condition along the shock trajectory rshock
= r(t) can

be a boundary condition at some X. for the similarity equations.

Thus we must have rshock = constant”ta. Note that, if two or more

shocks exist within one solution, they must all have that form with

the same value of a, differing only through different constants of

proportionality. We are interested in solutions for the range

Oca<l.

The jump conditions across a shock become, in terms of the

similarity variables V, C, and .R,

2C02
Y-l(l+vo) + ~y+l)(l+vo)Ii-lJl= —
y+l

2C12 = C02 + Kg [(l+VO) - (1+V1)2] (3,1)

.

-.

.

Rl(l+vl) = ROU+VO).



For the initial shock converging into material at rest, let us

take t = O to be the time of shock collapse, set r = A(-t)a,
shock

and take x = t(A/r)A as our similarity variable. Then the shock

path is x = -1. The solution for x c -1, the initial and undis-

. turbed region, is simply u = V = O = c = C, and R(x) = 1 (remember

that we are now taking K = O). Then the jump conditions give us
.

the starting values

V(-1) = -2/(y+l)

C(l) = +mGm-/ (y+l) (3.2)

R(-1) = (y+l)/(y-1).

The solution must extend through x = -O, which corresponds to

all ofr > 0 at t = -O, and continue through positive values of x

(and thus t) until we get to the reflected shock. At x = O, we

must have V = C = O, so that u and c may be finite at finite r (see

Eq. 2.6). But then the denominator in Eq. 2.10, namely D =

(1+V)ZC2, will be +1, whereas it starts out negative (namely

-(y-1)/(y+l)). Thus it must pass through zero, but it may do so

only if the numerators N~ and N2 vanish simultaneously. In other

words, our solution of dC/dV = N2/N1 must pass through a singular-

ity of the form 0/0, It will not do so automatically but must be

made to do so by a suitable choice of the parameter a. Specifi-

cally, we will find that a unique a(y) (for the spherical case, and

a different unique a(y) for the cylindrical case) gives the “stand-

ard” smooth solutions, but that, for y large enough, other values

of a give other valid solutions. To understand the matter, we must.-
investigate the singularities in more detail.

.- It should first be noted that, if we substitute C2 . (1+v)2,

which is to say D = O, into either N~ or N2 of Eq. 2.12, then the
other N will vanish identically.

7



Substituting C2 = (1+V)2 into the first Eq. 2.12 and setting

‘1
= O yields the cubic

o = (~+v)[vz + ~v + b], (3.3)
with

a= 1- (A-l)(y-2)
Vy ‘

(3.4) -

b = 2~.
Vy

The solution V = -1 is irrelevant to the converging shock problem

(it is the starting point for the collapsing cavity problem). The

other two solutions are real when the discriminant

a2-4b=l-2— ~;;(y+2) + d(y-2)2
V2Y2 (3.5)

is positive. The discriminant is positive for A-1 in the range

O<A-1 < (V&)“ (3.6)

and it is in that range that we will look for solutions. (The dis-

criminant is again positive for A-1 > vy/(fi-l~)2; this range does

not seem to provide any solutions.)

Note: For the collapsing cavity problem, Eqs. 3.4 through 3.6

come out to be the same expressions, but with y replaced by y-l.

Observe that the two singularities are at (V,C) = (-1,0) and

(0,1) when A = 1, and move toward each other as A increases, We

will distinguish the two singularities by calling them “left” and

“right” according as we choose the minus sign or the plus sign in

v= l/2(-at#’b) .
sing (3.7)

8



It will turn out that the “standard” solutions pass through

the left singularity for small y and through the right singularity

for large y. By continuity, then, there must be critical values

for y (one for spherical symmetry and one for cylindrical), for

which the standard solution has A at the top of the range given in

Eq . 3.6 and passes through the coalesced singularity. It appears
.

that “non-standard” solutions exist only for y greater than these

critical values, which are

Yc = 1.9’092084, for v = 1 (cylindrical),

Yc = 1.8697680, for v = 2 (spherical).

(3.8)

For any specific v and y, now, other than one of the critical

pairs, let us consider solutions of Eq. 2.13 for some A slightly

displaced from the unique A(v,y) which gives the “standard” solu-

tion. Consider the solution as it approaches the singularity

(which will, of course, have been slightly displaced by the change

in A). If the singularity is at (Vs,Cs), say, we must have

dc ~ (v- v#N2/av + (c-c~)aN2/ac

dv‘% (V-V~)aN1/av + (c-cs)aN1/ac’
(3.9)

where the partial derivatives are evaluated at (Vs,Cs) and are

simply algebraic functions of v, y, and A.

The general solution of this equation is

[(C-CS) - L2(WJ]
‘2 ‘1= constO[(C-Cs) - L1(V-Vs)] , (3.10)

.-
where, with

(3.11)

9



we have

2L1,2aN1/ac~ = aN2/ac~-aN1/av~tR

and

2E1,2aN1/8C~ = aN2/aC~+aN1/av~tR.

(3.12)

(3.13)

For our case, it appears that R is always real and non-zero, and

that L1 and L2 have opposite signs, in a neighborhood of the “stand-

ard” A(v,y). The E’s and L’s are of course algebraic functions of

v, y, and A.

If El and E2 have opposite signs, the only solutions through

the singularity are (locally) the special solutions

C-Cs = L1 2(V-VS).
s

(3.14)

For y < yc, the standard solution is of this type. For one particular

value of A, the solution passes through the left singularity with

the slope corresponding to the negative L, and, for that A, the left

singularity does indeed have E’s of opposite sign. For neighboring

values of A, the solution will not pass through either the left or

the right singularity.

Nor does it seem likely that, for y < yc, there are other solu-

tions for substantially different values of A. For larger values,

the E’s continue to have opposite signs. For substantially smaller

values of ~, the E?s do have the same sign, but the left singularity

moves further to the left, the positive L is less than one, and the

solution hits the forbidden line C = l+V before it can be attracted

to the singularity (see Fig. 3-l).

For y > y=, where the standard solution goes through the right

singularity, we have the case where the E’s have the same sign. In

such a case, all solutions which come sufficiently close to (VS,CS)

.

.

-.

..

10
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c(v)

/’‘4
\
‘u,

Fig. 3-1
Attractive singularity blocked
above by the line D=O,

pass through the singularity, and

ically like

C-es = Li(v-vs)>

where Ei (i = 1 or 2) is the E of

=0

Fig, 3-2
Attractive singularity open above.

they do so, in general, asYmPtot-

(3.15)

lesser magnitude. It turns out
that that L. is the positive L, and that the (unique) “standard!’
solution islprecisely the special solution which goes through with

negative slope (i.e., with the other L)e

For the entire range y > y=, the positive L is greater than
one. To reach the singularity without first crossing C = l+V,

therefore, the solution must come in from above (see Fig. 3-2).

Since the main effect of chan”ging ~ is to move the singularity-.
(i.e., the solution curve does not change much until we approach the

singularity), this means that the right singularity, with which we.-
are here concerned, must be moved left. Thus only values of A
greater than the standard A(v,y) will work. The foregoing analysis

is only valid in a neighborhood of the singularity. A complete
analysis will be published elsewhere.

11



P

a =0.63641050

P
o I 2 3 4 Cj 6

r

Fig. 3-3
Pressure profiles for y = 3,
spherical symmetry.

Figs. 3-3 through 3-5 show

the pressure, density, and veloc-

ity profiles at a time when the

incoming shock is at r = 1, for

the case y= 3, v = 2. For the

non-standard solutions, the cor-

ners are on the limiting charac-

teristic and are such as to sat-

isfy the flow equations from the

left and from the right. Note:

In these solutions, the curves in

the V-C plane were allowed to

leave the singularity in the

“standard” direction. This is

not necessary (see p. 10 of Ref.

5), but other solutions have not

yet been studied.

IV. THE REFLECTED SHOCK

p/p.

81/ a *0,628

a =0.630

4

CI=O.63WI060
1 I

“o I 2 3 4 5 6
r

Fig. 3-4
Compression profiles for y = 3,
spherical symmetry.

o

u

Q.0063641060

-
0 I

r

Fig. 3-5
Fluid velocity profiles for
3, spherical symmetry. JThe o&-
ward sloping portions are dis-
tinct but too close to plot
separately,

.

.

..

-.

The initial shock, which is our starting point, is at x = -1;

collapse is at x = O; and continuation to positive times is simply

continuation to positive x. As one might expect on physical grounds,

12



it will not be possible to continue the same solution to x = + ~.

One expects this because large positive values of x correspond to

small values of r at large positive values of t, and this region of

the flow should be behind a reflected shock. As mentioned above,

the trajectory of that reflected shock will have to lie on x = con-..
stant = 6, say, for some 6 > 0.

If we can find the separate similarity solution for the region

behind this reflected shock, say ~, t, and ~, then the two solutions

will have to satisfy the jump conditions at x = p. We will need to

satisfy

1+;(L3)= ~(l+v(f3)) + 2C2 f3
(y+l) ([+;(~))

(4.1)

tz(p) = c2(f3) + ~[(l+v(~))z - (l+;(~))z].

Note that the constant of motion will be a different constant on

the two sides of the reflected shock, just as it is a different con-

stant on the two sides of the initial shock.

This separate solution is needed for B < x < m, and the only

thing we have to serve as a boundary condition is the following.

We want u(r=O,t>O) to be zero, by isotropy, and we want c(r=O,t>O)

to be finite. In fact, we expect u to be proportional to r, for

small r, so we expect V to be constant and C to become infinite as

X+m .

The standard trick is to take a new variable w = x-~, with a a

positive number to be determined, and to try

..

t(kw)= to+;Ikw + iz(kw)z + ...
..

; (kw) =-(kw)-l + 61 + ;Zkw + ....

(4.2)

where k is a free parameter (our differential equations are homo-

geneous in w, so that ~(kw), ~(kw) are solutions whenever ~(w), E(w)

13



are) . Matching powers of kw, we find that, if we take

(4.3)
A

‘o
= -2(A-1)/y(v+l),

then we get a solution.

If we now think of the jump conditions as an operator which can

be applied to our original, incoming shock solution, for arbitrary

positive x, then we have “target” functions Vt(X) and Ct(x), to be

matched by ~(kw) and ;(kw). The value of x at which that match

occurs is, of course, just 60 If the value of kw at which the match

occurs, is, say, z, then we can determine k by setting z = k~-u, and

we have the complete solution.

v. THE LIMITS y+m AND y-+1.

For y+=, we need only switch to ~ = yV, and then we can go to

the limit explicitly. The denominator D becomes simply 1-C2; the

numerator for ~’ becomes

iil=- ~~ + C2[(V+1)V + 2(X-1)], (5.1)

and the numerator for C’ becomes

q = C“[C2 - A -(v+l-A)v/2]. (5.2)

These somewhat reduced equations can be integrated numerically by

the methods described below for general y.

For y+l, the situation is slightly more complicated, because

the singularity approaches the starting point (V,C) = (-1,0). If we

define Ez = y-1, then, to lowest order, our starting point is

(Vo, co) = (-1+.2/2,E/@)o The starting value for D is then -c2/2.

Now if we tentatively assume that A-1 will turn out to be of order

.

..

-.

14



(5.3)

E, we find that the leading terms in N
1

are

N1 % -(v+1)C2 + (1+V)2 + (A-l)(l+V),

. and the leading terms in N
2 are

N2 % C[C2-(l+V)2](~+V)/(l+V), (5.4)

C2 until l+V = C atconsidering that we must integrate from l+V =

the singularity.

If we integrate dC/dV = N2/N1 holding C fixed on the right hand

side, we find, consistently, that C changes only by a factor 1 -

order (slogs), and we find, again consistently, that we must have

A-1 = v ~-. (5.5)

that

of v

This is confirmed numerically, as well as the additional result

the Mach number of the reflected shock is ~-, independent

(see Table 5).

TABLE 5

BEHAVIOR OF THE SIMILARITY SOLUTIONS AS GAMMA APPROACHES UNITY

(1-cxp

-Ti--- (y-l)M2 (y-l)fl

y-l V=2 V.1 V=2 V=l V=2 V=l

0.1 0.4163 0.1317 1.262 1.685 1.615 1.354

0.01 0.9630 0.2755 2.117 1,986
.. 0.001 1.4864 0.3953 2.202 2.153 1.518 1.252

10-4 1.7909 0.4587 2.102 2.073 1.215 1.109
10-5 1.9216 0.4849 2.042 2.030 1.084 1.044
10-6

1.9641 0.4933 2.022 2.014 1.033 1.017

0 2 1/2 2’? 2? 1? 1?



VI . MULTIPLE CONVERGING SHOCKS

If there is a similarity solution corresponding to more than

one incoming shock, then the shocks must have the trajectories

r. = Ai(-t)a,
1

(6.1) ‘

with A. =A1<A2 <... If xi be the value of the similarity vari-
1

able on which the ith shock exists, then we must have xi = -(A/Ai)2.

Consider i=2.

With D(v,C) = (1+V)2 - C2, the jump conditions of Eq. 301 imPIY

(6.2)

so that D must change sign. Furthermore, since Region 2 is behind

the shock, we have R2 > RI > 0, and thus the third jump condition

implies (1+V2)2
2

< (l+V1) . But then the second jump condition im-

plies C12 < C22, giving D1 > D2. Since D1 and D2 are of opposite

sign, we have D2 < 0, D1 > 0.

Note: A “shock” existing right at the singularity D = O has—

Mach number unity and is not a shock at all.

Since our solution behind the initial shock starts out with D

negative, we see that xz must be greater than the value for which

the region 1 solution crosses the singularity. Thus we must have

the same value of a (=1/A) as we have for the single shock case,

since a is determined precisely by the necessity of passing through

the singularity.
..

Rewriting the jump condition on D in the form

(6.3)

and noting that D~ > 0 implies (C1/(l+V1))2 < 1, we see also that

ID21 <D~, with the inequality stronger for smaller values of y.

16
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This means that the vector in

the V-C plane connecting (V@~)

to (V2,C2)has negative slope

between -1 and O.

When the matter is investi-

gated numerically, it turns out

that the locus of points (V2,CJ>

as x~ ranges toward zero from

the value of x corresponding to

the singularity, is an arc con-

necting the singularity to the

starting point (VO,CJ and lying

always below and to the left of

the original solution curve (see

Fig. 6-l). When an attempt is

made, however, to continue the

solution from any of those points

solution moves almost parallel to

( VO,CJ

/“
.\*# L 0=0

uPPER
SINGULARITY

/

LOWER
SINGULARITY

Fig. 6-1
The dashed line is the locus of
points accessible from S1 by the
jump conditions.

(V2,C2), it develops that the

the original solution curve.

Hence, the continued solution cannot pass again through the same

singularity.

This immediately suggests that when y is greater than the

critical value of Eq. 3.8, so that the primary solution goes through

the right hand (upper) singularity, a point (V#2) can be found so

that the continued solution will pass through the left hand (lower)

singularity. This turns out indeed to be the case when y is greater

than yc by an amount small enough that the width of the locus

(measured parallel to the 45° line C = l+V) is not less than the

spacing between the two singularities. In fact, there will be two

double shock solutions, for a band of y values, corresponding to

relatively weak and relatively strong second shocks, with the two

solutions coalescing at the top of the band and then ceasing to

exist as y leaves the band.

For y’s above this band, non-standard solutions may exist with

y’s sufficiently close to the upper bound of Eq. 3.6, which is to



say with the two singularities sufficiently close, to permit fur-

ther solutions with two incoming shocks. A complete analysis will

be published elsewhere.

The entire situation can be grasped most simply as follows.

Pick values for v and y, with y > yc. This determines a starting

point in the V-C plane, and a one parameter family of (incomplete)
.

solutions labeled by A. Pick a value for A which lets the solution

pass through the right singularity and continue to the origin; call

the corresponding solution curve S1. Now that we have A, we can

locate the unused left singularity and construct the solution curve

(call it S2) which passes through it in the standard direction.

Lastly, we draw in the (V~,c2) locus corresponding to potential

second shocks. Then we have zero, one, or two double shock solu-

tions according as that locus cuts S2 in zero, one, or two points>

because we have a physical method of jumping from solution curve S1

to solution curve S20 Finally, if the left singularity should have

eigenvalues of the same sign, then there would by a family of S Is,
2

all valid.

Typical solutions are shown in Table 6-1.

TABLE 6-1

MACH NUMBERS FOR WEAK AND STRONG SECOND SHOCKS

For v = 1 (Yc = 1.9092084)

Y Ml M2

1.91 1.000566 1233.532

1.95 1.078474 22.34995

2.00 1.248826 8.846871

2.05 1.548093 4.701998

2.10 none

For v = 2 (yc = 1.8697680)

1.87 1.000170 3508.718

1.90 1.070279 24.19837

2.00 1.848820 3.496177

2.009 2.220365 2.701936

2.01 none

18



VII. CONDITIONS BEHIND THE REFLECTED SHOCK

The position of the reflected shock, as a function of time, is

given by

r
r.%(t) = Af3-ata, (7.1)

where B is the value of the similarity variable x corresponding to

the shock trajectory, as mentioned above, and A is the constant

appearing in the trajectory of the initial shock.

For the region behind the reflected shock (inside it, geomet-

rically speaking), it is of interest to consider the time depend-

ence of the volume integrals of mass, internal energy, and kinetic

energy, and of the “mean free path” integral of pdr. By appealing

to the original substitutions (Eq. 2.6) for u, c, and p, and by

substituting for r the appropriate expression in terms of t and the—
similarity variable w (which runs from zero to f3-u), we find the

following, for given v and y, taking pO = 1.

The total mass is simply proportional to the total volume, with

no other time dependence, and the integral of pdr is simply propor-

tional to rrosoo (The volume, of course, is going like t(V+l)a.)

The total internal energy and the total kinetic energy are separate-

ly proportional to the volume times the factor t-2(1-U) . As re-

quired for physicality, a is always less than unity, so that the

average values of internal and kinetic energies per unit volume

decrease with time. (These results also imply that the energy den-

sities behind the reflected shock are instantaneously infinite at

collapse time. This is in accord with the fact that C(x)/x and

V(x)/x remain finite at x = LO, so that the fluid velocity u(r,t)

and the sound speed c(r,t) behind the initial shock become infinite

like r-(l”a)/a at collapse.)

The various constants of proportionality are given, as func-

tions of v and y, in Tables 7-1 and 7-2.
‘1 and 12 are, respec-

tively, the internal and kinetic energies per unit volume, times
A-2~2at2(1-a) . 13 is the mass per unit volume; 14 is the mass per

unit area divided by r
r.s.”
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TABLE 7-1

VARIOUS PARAMETERS OF THE STANDARD SIMILARITY SOLUTION, AS

FUNCTION OF GAMMA; SPHERICAL CONVERGENCE.

V-2 (spherical)

Y a $ Mach # P2(6) 11 12 13 14

1.1

1.2

1.3

1.4

1.5

1.6

5/3

1.7

1.8

1.9

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.5

5.0

5.s

6.0

6.5

7.0

8.0

10

50

100

m

.79596980

.75714179

.73377673

.71717450

.70442807

.69418951

.68837682

.68571652

.67855370

.67240014

.66704607

.6S816533

.65108461

.64S30018

.64048378

.63641060

.63292118

.62989873

.6272S578

.62492541

.62285554

.61857036

.61522398

.61253956

.6103391S

.60850311

.60694820

.60445829

.60104880

.59073010

.58950281

.58828929

16.1s41

6.43123

3.81021

2.68849

2.08773

1.72065

1.s4790

1.47617

1.30320

1.17523

1.07725

.938224

.845319

.779560

.731006

.693969

.664976

.641817

.622959

.607422

.594419

.569946

.552999

.540843

. S31820

.524919

.519S78

.511963

.503479

.494072

.494977

.496368

3.5530 333.6 1.95+6 243.33 4.8+4

2.3502 49.05 1.37+4 11.0163 1710.

1.9384 19.03 1031.6 2.2220 320.4

1.7356 10.72 197.5 .8029 114.1

1.61553 7.226 60.76 .3894 56.12

1.53621 5.479 24.73 .2243 33.30

1.496.7 4.719 15.09 .1655 25.20

1.47982 4.419 12.07 .1443 22.27

1.43758 3.729 6.685 .1002 16.17

1.40470 3.251 4.058 .07355 12.45

1.37833 2.902 2.641 .05628 10.01

1.33851 2.432 1.3015 .03609 7.102

1.30973 2.134 .7399 .02521 5.489

1.28784 1.930 .4645 .01870 4.493

1.27056 1.783 .3138 .014S3 3.835

1.25649 1.672 .2232 .00159 3.360

1.24482 1.587 .1663 .009571 3.024

1.24487 1.518 .1279 .008029 2.762

1.22641 1.463 .1008 .006819 2.550

1.21895 1.417 .08034 .005740 2.354

1.21246 1.3785 .06746 .005209 2.263

1.19897 1.3056 .04302 .003673 1.960

1.18871 1.254 .03095 .002974 1.832

1.18033 1.217 .02222 .002258 1.665

1.17342 1.188 .01773 .001978 1.628

1.16776 1.165 .01348 .001544 1.503

1.16281 1.147 .01116 .001359 1.473

1.15480 1.120 .007824 .001033 1.398

1.14368 1.087 .004273 .000615 1.263

1.10718 1.0118 .3173* .06482* 1.043

1.10233 1.0055 .2859* .05965* .9883

1.097s3 1 0.2880* .6456*

3.6+4

1253.

231.1

81.83

40.21

23.91

18.14

16.0S

11.71

9.061

7.327

5.262

4.115

3.406

2.936

2.600

2.358

2.171

2.023

1.896

1.815

1.6Z2

1.518

1.419

1.374

1.308

1.279

1.227

1.149

1.018

.9975

..

..

..

*: (y+l)q
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TABLE 7-2

VARIOUS PAIU4METERS OF THE STANDARD SIMILARITY SOLUTION,

AS FUNCTIONS OF GAMMA; CYLINDRICAL CONVERGENCE.

v= 1 (cylindrical)

Y a B Mach #
12 ‘3 14

1.1

1.2

1.4

5/3

1.8

1.9

2.0

2.4

3.0

3.4

4.0

S.o

6.0

10
50
100

.88S24806

.86116303

.83532320

.81562490

.80859994

.80409908

.80011235

.78776900

.77S66662

.77000368

.7636346S

.7564010S

.75156168

.74182593

.73002154

.72853594

.727048052

13.5364

6.09996

2.81S61

1.69479

1.44082

1.30s1.5

1.19963

.941829

.763158

.697702

.634863

. 575038

.540788

.483613

.431537

.426147

.421009

4.10488

2.78911

2.02295

1.69965

1.61796

1.57247

1.53602

1.44206

1.37121

1.34349

1.31564

1.28751

1.27050

1.23980

1.20756

1.20374

1.199865

29.55

11.15

4.796

2.928

2.527

2.316

2.154

1.763

1.496

1.399

1.306

1.219

1.169

1.0867

1.0142

1.0069

1

3.28+5

6889.0

203.46

21.144

10.139

6.4327

4.3370

1.3299

.4265

.2485

.1329

.06190

.03523

.008622

.6287*

.5831*

.5431*

15.614

1.9614

.2822

.07873

.05152

.03949

.03129

.01528

.007407

.005175

.003377

.001948

.001273

.0003962

.04112*

.03909*

.03745*

5236. 4681.

506.1 445.0

65.48 S7.11

19.31 16.88

13.32 11.69

10.68 9.390

8.870 7.817

5.270 4.694

3.398 3.069

2.828 2.575

2.341 2.150

1.917 1.783

1.693 1.589

1.325 1.281

1.0736 1.0554

1.0358 1.0269

*: (y+l)z~

Another integral of possible interest is the integral, from

time zero to time t, of the volume integral of a power of the tem-

perature (or pressure or internal energy; we a~e dealing with a

polytropic fluid) times some function of the density. One might..
imagine such an integral measuring the total amount, taking place

.. up to time t, of some reactive process having such a dependence on

density and temperature (assuming, of course, that the energetic

of the process do not break the similarity solution). For the qth

power of the temperature, we find the following rather curious re-

sult . If 2n < (vu+a+l)/(1-a), then the integral is entirely regu-

lar and goes like t~a+a+l-2n(l-a), But for any larger value of



n, the integral would diverge unless other effects (such as deple-

tion of the reactants) were taken into account. For v = 2, the

critical values for n(y) are$ for example, n(l.4) = 5.57$ n(3)

= 4.00, n(~) = 3.36.

VIII. THE NUMERICAL INTEGIU4TION

All calculations were done on the Maniac 11 computer, using

the Madcap V system. All constants and variables entering into the

integration of the differential equations were carried with at

least 16 decimal digits. Explicit fifth order Runge-Kutta was

used, with step size controls as discussed below.

For the a search, and in fact for all the region behind the

incoming shock, the independent variable used was x = t(A/r)A, and

the dependent variables were v(x) = -V(x)/x and c(x) = C(x)/x. The

minus sign is historical accident; the division by x is to give

nice behavior at the star point singularity V = C = O. The initial

value for x is -1, and integration must be continued past the un-

known value x = B. An efficient method of coping with this diffi-

culty is described below.

The equations were used in the form dv/dx = N1/D, dc/dx = N2/D,

where now

D = (1-VX)2 - (CX)2, (8.1)

‘1
= pl[vz(l-vx) + p2c2] - p3vc2x,

P2

‘2
= c[v(p5-p20vx) + P1C2X(1 - 2(1-VX1117

.

and the constants are

22
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‘1
= l-a

P.2 = 2/7

P3 = (~+1)~ - 1 (8.2)

P~ = 1/2 [(y+l)(l-a) - av(y-1)]

>.

..

P20
= l-a-av (y-1)/2.

For the search for the “standard” a(v,y), we exploit the facts

that the correct solution goes quite smoothly (in the V-C plane)

from its starting point through the singularity, that the positions

of the singularities are quite sensitive to the value of a, and

that the solution curve for a wrong value of a does not differ much

from the correct solution curve all the way up to a point where we

can determine that we do indeed have a wrong value. Accordingly,

an efficient iterative algorithm is to choose the next guess for a

so as to move the relevant singularity on to the line connecting

the initial (v,c) point to the last (v,c) point reached before the

aforesaid determination. In practice, this determination was made

if dV/dx changed sign or if ldv/dxl became larger than three times

its initial value. (When calculating the non-standard solutions

discussed on pp. 1o-I2, the “determination” is simply suppressed.)

It is important to note that all finite numerical representa-

tions of a will be determined to be wrong if we approach the

singularity with a sufficiently small step size. Conversely,

almost any value for a will get us through the singularity without

such determination if we approach with a sufficiently large step

size. Accordingly, the step size was automatically reduced to a

prescribed hmin, as we approached the singularity, and no further~
...———

with hmin chosen to give the desired accuracy.

search work was done with hmin = 2-30 % 10-9.

The code was run in the a search mode for

of (v,y), without continuing the solution past

The bulk of the a

all desired values

the singularity.
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Then it was rerun with the correct a and with larger hmin (usually

2-24 ~ 6.4x10-8) to get the complete solution. In this mode, it

was almost always true that the solution would step smoothly

through the singularity in a single hmin step, but this is a matter

of luck. If, as happened occasionally, the code determined that a

step (or a partial step within the Runge-Kutta) might accidentally

land too close to the singularity, then it took a “jump” step of

8hmin and printed a notification. (Note that, as discussed else-

where, we are passing through the singularity in an eigendirection,

without change of slope.)

In continuing the solution through x = O, the step size was

again reduced to hmin, in order to permit printing out accurate

values of V(x)/x and C(x)/x at x = O.

TWO problems arise, now, in connection with continuing this

phase of the solution up to x = 6. We must be sure to go far

enough, but we do not want to waste time going too far, and we need

finely spaced tables of the “target” functions defined on page 14,

but only in the neighborhood of (the unknown) 6. The two problems

are solved as follows.

The code is given a lower bound for 6, call it Bmin; if no

better information is available, then zero is the lower bound used

by default, but of course we can do much better than that once we

have sketched out f3(v,y)by running a few cases. The code then

saves the solution for some value of x near Bmin
and pushes ahead

using large steps and saving a coarse table of the target functions.

It pushes ahead until it approaches the singularity C = -(I+V),

which must always lie beyond 6, and then finds the (approximate)

reflected shock solution (see below) and an approximate value for

8. Then it picks up the saved solution from near Bmin and moves

ahead with fine steps until x is safely beyond the approximate B,

and, finally, gets an accurate solution for the reflected shock.

For the region behind the reflected shock, the independent

variable used was t = kx-a, where k is a free parameter that

cancels out of the differential equations and is used as described

below, and where o is as defined by Eq, 4.3, The dependent

..

.

..

-.
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variables were v(t) = -V(x) and c(t) = C(x) + I/t. The starting
value for t was normally taken as about Z-25 % 3e2x10-80 The differ-
ential equations were used in the form dv/dt = M1/(atE) and dc/dt

= [-1 + (1-ct)M2/(oE)]/t2, where

..

.
E = (1-ct)z - (1-v)ztz,

Ml = v(l-v)(l-av)t2 - p4(l-ct)2(v-p )
6’

M P21
2
= (1-ct)z(a + —) - t2[(l-v)(l-p22v) + P23VI>

l-v

and the constants are

P4 = a(v+l)

-P6=2
l-lx

ay (V+l)

(8.3)

(8.4)

’21
= (l-a)/y

J?22= U(1 + l/2v(y-1))

’23
= l/2(y-1) (1-a),

The starting value for V(t) iS p6, removing the I/t singularity in

dv/dt . The starting value for c(t) is zero; it can be determined by

substitution that the starting value for M..
2

is then just a, which
removes the l/t2 singularity from dc/dt. A little analysis shows

.. that v(t) is even and c(t) is odd, so there is in fact no l/t

singularity either.

The integration is carried out until V = -v and C = c - l/t

match the target functions. The interpolated value of x at which

the match occurs is then B. If it is desired to tabulate the solu-

tion behind the reflected shock against x, which runs from @ to

25



infinity, rather than against t, then the parameter k can be identi-

fied as k = t o
match~ ●

IX. THE DENSITY, AND THE MACH NUMBER OF THE REFLECTED SHOCK

Taking the initial density PO as unity, we can use the con- ..

stant of the motion to find that, in the region between the incoming

shock and the reflected shock (call it Region 2),
.

P2(r,t) = r32(x) = :[:w-(=f]b,

where x =
o

-1, say, Co = C(XO), and V. = V(xo), and where

l-aa=—
a(v+l)

(9.1)

(9.2)

2a v+l
b = [(v+l)y(- [t-lJJa - Z “

For the region behind the reflected shock (call it Region 3),

we can use the jump condition to relate the densities at 6:

(Y+1)M2
PZJB) =

(y-l)M2 + 2
P#) 9

(9.3)

where the Mach number, being the magnitude of the ratio of fluid

speed ahead of the shock, relative to shock speed, to sound speed
..

ahead of the shock, turns out to be simply ..

M = I(l+V2(f3))/C2(6)1.

26
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Then we can use

p3(r,t) = p3(x) = p3(e)
[%) (l+:{B)J]’. (,.s,
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